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Abstract

Out-of-sample tests of forecast performance depend on how a given data set is split
into estimation and evaluation periods, yet no guidance exists on how to choose the
split point. Empirical forecast evaluation results can therefore be di¢ cult to interpret,
particularly when several values of the split point might have been considered. While
the probability of spurious rejections is highest when a short out-of-sample period is
used, conversely the power of out-of-sample forecast evaluation tests is strongest when
the sample split occurs early in the sample. We show that very large size distortions can
occur, more than tripling the rejection rates of conventional tests of predictive accuracy,
when the sample split is viewed as a choice variable, rather than being �xed ex ante.
To deal with this issue, we propose a test statistic that is robust to the e¤ect of mining
over the start of the out-of-sample period. Empirical applications to predictability of
stock returns and in�ation demonstrate that out-of-sample forecast evaluation results
can critically depend on how the sample split is determined.
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stock returns; in�ation forecasting.
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1 Introduction

Statistical tests of a model�s forecast performance are commonly conducted by splitting a

given data set into an in-sample period, used for initial parameter estimation and model

selection, and an out-of-sample period, used to evaluate forecasting performance. Em-

pirical evidence based on out-of-sample forecast performance is generally considered more

trustworthy than evidence based on in-sample performance which can be more sensitive to

outliers and data mining (e.g., White (2000b)). Out-of-sample forecasts also better re�ect

the information available to the forecaster in �real time�(Diebold & Rudebusch (1991).)

This paper focuses on a dimension of the forecast evaluation problem that has so far

received little, if any, attention. When presenting out-of-sample evidence, the sample split

de�ning the beginning of the evaluation period is a choice variable, yet there seems to be

no broadly accepted guidelines for how to select the sample split. Instead, researchers have

adopted a variety of practical approaches. One approach is to choose the initial estimation

sample to have a minimum length and use the remaining sample for forecast evaluation. For

example, Stock &Watson (1999) use the �rst 10 years of data to estimate forecasting models

for U.S. in�ation while, in their forecasts of US stock returns, Welch & Goyal (2008) use 20

years of monthly observations as the initial estimation sample and the remainder for out-

of-sample evaluation. Another approach is to do the reverse and reserve a certain sample

length, e.g., 20 years of observations, for the out-of-sample period, as in Inoue & Kilian

(2008). Alternatively, researchers such as Rapach, Strauss & Zhou (2010) use multiple out-

of-sample forecast samples and report the signi�cance of forecasting performance across

all samples. Ultimately, however, these approaches all depend on ad-hoc choices of the

individual split points.

The absence of guidance on how to select the split point dividing the in-sample and

out-of-sample periods raises several questions. First, a �data-mining� issue arises because

researchers could have considered several split points and simply report results for the best

choice. When compared to test statistics that assume a single (predetermined) split point,

results that are optimized in this manner can lead to size distortions and may ameliorate the

tendency of out-of-sample tests of predictive accuracy to underreject (Inoue & Kilian (2004)

and Clark & West (2007)). It is important to investigate how large such size distortions

are, how they depend on the split point�whether they are largest if the split point is at

the beginning, middle or end of the sample�and how they depend on the dimension of the
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prediction model under study.

A second question is related to how the choice of split point trades o¤ the e¤ect of

estimation error on forecast precision versus the power of the test as determined by the

number of observations in the out-of-sample period. Given the generally weak power of

out-of-sample forecast evaluation tests (Inoue & Kilian (2004)), it is important to choose

the sample split to generate the highest achievable power. This will help direct the power

in a way that maximizes the probability of correctly �nding predictability. We �nd that

power is maximized if the sample split falls relatively early in the sample so as to obtain

the longest available out-of-sample evaluation period.

A third issue is whether a test statistic that is robust to sample split mining can be

derived. To address this point, we propose a minimum p-value approach that accounts for

search across di¤erent split points while allowing for heteroskedasticity across the distribu-

tion of critical values associated with di¤erent split points. The approach yields conservative

inference in the sense that it is robust to all possible sample split points having been con-

sidered which from an inferential perspective represents the �worst case�scenario. Another

possibility is to construct a joint test for out-of-sample predictability at multiple split points,

but this leaves aside the issue of how best to determine these multiple split points.

The main contributions of our paper are the following. First, using a simple theoretical

setup, we show how predictive accuracy tests such as those proposed by McCracken (2007)

and Clark & McCracken (2001, 2005) are a¤ected when researchers optimize or �mine�over

the sample split point. The rejection rate tends to be highest if the split point is chosen

at the beginning or end of the sample. We quantify the e¤ect of such mining over the

sample split on the probability of rejecting the null of no predictability. Rejection rates

are found to be far higher than the nominal critical levels. For example, tests of predictive

accuracy for a model with one additional parameter conducted at the nominal 5% level, but

conducted at all split points between 10% and 90% of the sample, tend to reject 15% of the

time, i.e., three times as often as they should. Similar in�ation in rejection rates are seen

at other critical levels, although they grow even larger as the dimension of the prediction

model grows (for a �xed benchmark). Second, we extend the results in McCracken (2007)

and Clark & McCracken (2001, 2005) in many ways. We derive results under weaker

assumptions and provide simpler expressions for the limit distributions. The latter mimic

those found in asymptotic results for quasi maximum likelihood analysis. In particular, we
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show that expressions involving stochastic integrals can be reduced to simple convolutions

of chi-squared random variables. This greatly simpli�es calculation of critical values for the

test statistics. Third, we propose a test statistic that is robust to mining over the sample

split point. In situations where the �optimal� sample split is used, our test shows that

in order to achieve, say, a �ve percent rejection rate, test statistics corresponding to a far

smaller nominal critical level, such as one percent or less, should be used. Fourth, we derive

analytical results for the asymptotic power of the tests in this context that add insight

on existing simulation-based results in the literature. We characterize power as a function

of the split point and show how this gets maximized if the split point is chosen to fall at

the end of the sample. Fourth and �nally, we provide empirical illustrations for US stock

returns and in�ation that illustrate the importance of accounting for sample split mining.

Our analysis is related to a large literature on the e¤ect of data mining arising from

search over model speci�cations. When the best model is selected from a larger universe of

competing models, its predictive accuracy cannot be compared with conventional critical

values. Rather, the e¤ect of model speci�cation search must be taken into account. To this

end, White (2000b) proposed a bootstrap reality check that facilitates calculation of adjusted

critical values for the single best model and Hansen (2005) proposed various re�nements

to this approach; see also Politis & Romano (1995). Sullivan, Timmermann & White

(1999) show that such adjustments can make a big di¤erence in the context of inference on

the ability of technical trading rules to generate excess pro�ts in �nancial trading. This

literature considers mining across model speci�cations, but takes the sample split point as

given. Instead the forecast model is kept constant in our analysis, and any mining is con�ned

to the sample split. This makes a material di¤erence and introduces some unique aspects

in our analysis. The nature of the temporal dependence in forecast performance measured

across di¤erent sample splits is di¤erent from the cross-sectional dependencies observed

in the forecasting performance measured across di¤erent model speci�cations. While the

evaluation samples are identical in the bootstrap reality check literature, they are only

partially overlapping when di¤erent sample splits are considered. Moreover, the recursive

updating scheme for the parameter estimates of the forecast model introduces a common

source of heteroskedasticity and persistence across di¤erent sample splits.

In a paper written independently and concurrently with our work, Rossi & Inoue (2011)

study the e¤ect of �mining� over the length of the estimation window in out-of-sample
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forecast evaluations. While the topic of their paper is closely related to ours there are

important di¤erences, which we discuss in details in Section 4.

The outline of the paper is as follows. Section 2 introduces the theory through linear

regression models, while the power of out-of-sample tests is addressed in Section 3. A

test that is robust to mining over the split point is proposed in Section 4, and Section 5

presents empirical applications to forecasts of U.S. stock returns and U.S. in�ation. Section

6 concludes.

2 Theory

Our analysis uses a regression setup that is �rst illustrated through a very simple example

which is then extended to more general regression models.

We focus on the common case where forecasts are produced from recursively estimated

regression models using least squares and forecast accuracy is evaluated using mean squared

errors, (e.g., Diebold & Rudebusch (1991), Inoue & Kilian (2008), Patton & Timmermann

(2007), and Stock & Watson (2002).) Other estimation schemes such as a rolling window or

a �xed window could be considered and would embody slightly di¤erent trade-o¤s. However,

in a stationary environment, recursive estimation based on an expanding data window makes

most e¢ cient use of the data.

2.1 A Simple Illustrative Example

Consider the simple regression model that only includes a constant:

yt = � + "t; "t � (0; �2"): (1)

Suppose that � is estimated recursively by least squares, so that �t =
1
t

Pt
s=1 ys: The

associated prediction of yt+1 given information at time t is given by

ŷt+1jt = �t: (2)

The least squares forecast is compared to a simple benchmark forecast

ŷbt+1jt = 0: (3)

This can be interpreted as the regression-based forecast under the assumption that � = 0;

so that no regression parameters need to be estimated.
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For purposes of out-of-sample forecast evaluation, the sample is divided into two parts.

A fraction, � 2 (0; 1); of the sample is reserved for initial estimation while the remaining
fraction, (1��) is used for evaluation. Thus, for a given sample size, n; the initial estimation
period is t = 1; : : : ; n� and the (out-of-sample) evaluation period is n� + 1; : : : ; n; where

n� = b�nc is the integer part of �n:
Forecasts are evaluated by means of their out-of-sample MSE-values measured relative

to those of the benchmark forecasts:

Dn(�) =
nX

t=n�+1

(yt � ŷbtjt�1)
2 � (yt � ŷtjt�1)2: (4)

Given a consistent estimator of �2" such as �̂
2
" = (1� �)�1n�1

Pn
t=n�+1

(yt � ŷtjt�1)
2, under

the null hypothesis, H0 : � = 0; it can be shown that

Tn(�) =
Dn(�)

�̂2"

d! 2

Z 1

�
u�1B(u)dB(u)�

Z 1

�
u�2B(u)2du; (5)

where B(u) is a standard Brownian motion, see McCracken (2007). The right hand side of

(5) characterizes the limit distribution of the test statistic, and we denote the corresponding

CDF by F�;1(x). Later we will introduce similar distributions deduced from multivariate

Brownian motions, which explains the second subscript of F: For a given value of �, Tn(�)

can be computed and compared to the critical values tabulated in McCracken (2007, table

4). Alternatively, the p-value can be computed directly by

p(�) = 1� F�;1(t); where t = Tn(�): (6)

Since Tn(�)
d! F�;1 and F�;1(t) is continuous, it follows that the asymptotic distribution of

p(�) is the uniform distribution on [0; 1].

2.1.1 Mining over the Sample Split Point: Actual Type I Error Rate

Since the choice of � is somewhat arbitrary, a researcher may have computed p-values for

several values of �. Even if individual researchers consider only a single value of �, the

community of researchers could collectively have computed p-values for a range of �s and

this could in�uence an individual researcher�s choice of �. Such practices raise the danger

of a subtle bias a¤ecting predictive accuracy tests which are only valid provided that � is

predetermined and not selected after observing the data. In particular, it suggests treating

the sample split point as a choice variable which could depend on the observed data.

6



If the sample split point, n�, is being used as a choice parameter, and the reported

p-value is in fact the smallest p-value obtained over a range of sample splits, such as

pmin � min
������

p(�); with 0 < � � � < �� < 1;

then it is no longer a valid p-value, because the basic requirement of a p-value, Pr(pmin �
�) � �; does not hold for the smallest p-value which represents a �worst case� scenario.1

Note that we bound the range of admissible values of � away from both zero and one.

Excluding a proportion of the sample at the beginning and end of the data is common

practice from the theory on structural breaks and ensures that the distribution of the out-

of-sample forecast errors is well behaved.

Figure 1 plots the limit distribution of pmin as a function of the nominal critical level, �.

The distribution is shown over its full support in the left panel, and the right panel shows

the lower range of the distribution that is relevant for testing at conventional signi�cance

levels. The extent to which the CDF is above the 45 degree line reveals the over-rejections

arising from the search over possible split points. For instance the CDF of pmin is about

14% when evaluated at a 5% critical level, which tells us that there is a 14% probability

that the smallest p-value, min0:1���0:9fp(�)g; is less than 5%: The �gure clearly shows how
sensitive out-of-sample predictive inference can be to mining over the split point.

It turns out that this mining is most sensitive to sample splits occurring towards the end

of the sample. For instance we �nd min0:8���0:9 p(�) � 0:05 with a probability that exceeds
10%. Even a relatively modest mining over split points towards the end of the sample can

result is substantial over-rejection. To see this, Figure 2 shows the location of the smallest

p-value, as de�ned by �
�min : p(�min) = min

10%���90%
p(�)

�
:

The location of the smallest p-value, �min; is a random variable with support on the interval

[0:1; 0:9]. The histograms in Figure 2 reveal that under the null hypothesis (left panel) the

smallest p-value is more likely to be located late in the sample (i.e., between 80% and 90%

of the data), whereas under the alternative hypothesis the smallest p-value is more likely to

be found early in the sample. The right panel of Figure 2 shows the location of �min under

the local alternative, � = c �"p
n
; with c = 3: For more distant local alternatives such as c = 5;

1For simplicity the notation suppresses the dependence of p�min on 
.
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the di¤erence becomes more pronounced. As the value of c approaches zero, the histogram

under the local alternative approaches that of the null hypothesis.

These �ndings suggest, �rst, that conventional tests of predictive accuracy that assume

a �xed and pre-determined value of � can substantially over-reject the null of no predictive

improvement over the benchmark when in fact � is chosen to maximize predictive perfor-

mance. Second, spurious rejection of the null hypothesis is most likely to be found with a

sample split that leaves a relatively small proportion of the sample for out-of-sample eval-

uation. Conversely, true rejections of a false null hypothesis are more likely to produce a

small p-value if the sample split occurs relatively early in the sample.

2.2 General Case

Next consider the general case in which the benchmark model has k regressors, X1t 2 Rk;
whereas the alternative forecast is based on a larger regression model with k+ q regressors,

Xt = (X
0
1t; X

0
2t)

0 2 Rk+q, which nests the benchmark model.2 Forecasts could be computed
multiple steps ahead, so the benchmark model�s regression-based forecast is now given by

ŷbt+hjt =
~�
0
1;tX1t; (7)

with

~�1;t =

 
tX
s=1

X1;s�hX
0
1;s�h

!�1 tX
s=1

X1;s�hys; (8)

while the alternative forecast is

ŷt+hjt = �̂
0
1;tX1t + �̂

0
2;tX2t; (9)

where �̂t = (�̂
0
1;t; �̂

0
2;t)

0 is the least squares estimator obtained by regressing ys on (X 0
1;s�h; X

0
2;s�h)

0;

for s = 1; : : : ; t. For simplicity, we suppress the horizon subscript, h, on the least squares

estimators.

The test statistic takes the same form as in our earlier example,

Tn(�) =

Pn
t=n�+1

(yt � ŷbtjt�h)
2 � (yt � ŷtjt�h)2

�̂2"
; (10)

but its asymptotic distribution is now given from a convolution of q independent random

variables, 2
R 1
� u

�1B(u)dB(u)�
R 1
� u

�2B(u)2du; as we make precise below in Theorem 1.

2West (1996) considers the non-nested case.
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The asymptotic distribution is derived under assumptions that enable us to utilize the

results for near-epoch dependent (NED) processes established by De Jong & Davidson

(2000). We also formulate mixing assumptions (similar to those made in Clark & McCracken

(2005)) that enable us to utilize results in Hansen (1992). The results in Hansen (1992)

are more general than those established in De Jong & Davidson (2000) in ways that are

relevant for our analysis of the split-mining robust test in Section 4.

In the assumptions below we consider the process, Vt = (yt; X 0
t�h)

0; and let Vt be some
auxiliary process that de�nes the �ltration F t+mt�m = �(Vt�m; : : : ;Vt+m):

Assumption 1 The matrix, �vv = E(VtV 0t ); is positive de�nite and does not depend on t;

and var[n�1=2
Pbunc
t=1 vech(VtV

0
t � �vv)] exists for all u 2 [0; 1]:

The �rst part of the assumption ensures that the population regression coe¢ cients, in

our predictive regressions, do not depend on t; and the second part ensures (in conjunction

with Assumption 2 stated next) that we can establish the desired limit results.

Assumption 2 For some r > 2, (i) kVtk2r is bounded uniformly in t; (ii)


Vt � E(VtjF t+mt�m )




4
�

dt�(m); where �(m) = O(n�1=2��) for some � > 0 and dt is a uniformly bounded sequence

of constants; (iii) Vt is either �-mixing of size �r=(r�2); or �-mixing of size �r=(2(r�1)):

Assumption 2 establishes Vt as an L4-NED process of size �1
2 on Vt; where the latter

sets limits on the �memory�of Vt: The advantage of formulating our assumptions in terms

of NED processes is that the dependence properties carries over to higher moments of the

process. We have, in particular that vech(VtV 0t ) is L2-NED of size �1
2 on Vt; and key

stochastic integrals that show up in our limit results are derived from the properties of

vech(VtV
0
t ):

It is convenient to express the block structure of �vv in the following ways

�vv =

�
�yy �
�xy �xx

�
with �xx =

�
�11 �
�21 �22

�
;

where the blocks in �xx refer to X1t and X2t; respectively. Similarly, de�ne the �error�

term from the large model

"t = yt � �yx��1xxXt�h;

and the auxiliary variable

Zt = X2t � �21��111 X1t;
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so that Zt is constructed to be the part of X2t that is orthogonal to X1t:

Next, we introduce the population objects, �2" = �yy � �yx��1xx�xy and �zz = �22 �
�21�

�1
11 �12. It follows that �

2
" > 0 and that �zz is positive de�nite, because �vv is positive

de�nite. Finally, de�ne

Wn(u) :=
1p
n

buncX
t=1

Zt�h"t; (11)

which is a CADLAG on the unit interval that maps into Rq. The space of such functions is

denoted Dq[0;1]. Two important matrices in our asymptotic analysis are


 := plim
n!1

1

n

nX
s;t=1

Zs�h"s"tZ
0
t�h and � = �2"�zz;

where the former is the long-run variance of fZt�h"tg: From Assumption 1 it follows that

both 
 and � are well de�ned and positive de�nite. Next we formulate the mixing assump-

tions.

Assumption 2�For some r > � > 2, wt = Zt�h"t is �-mixing sequence with mixing

coe¢ cients of size r�=(r � �) and supt Ejwrt j < C <1.
We then have the following theorem:

Theorem 1 Given Assumptions 2 & 1 or Assumptions 1 & 2�we have

Wn(u))W (u) = 
1=2B(u);

where B(u) is a standard q-dimensional Brownian motion.

This result shows that a functional central limit theorem applies to that part of the

score from the �large� prediction model that di¤erentiates it from the nested benchmark

model. The result is needed for hypothesis tests that use the relative accuracy of the two

models. Not surprisingly, 
 will be de�ned from the long-run variance of Zt�h"t apart from

a scaling factor, �2".

Assumption 3 cov(Zt�h"t; Zs�h"s) = 0 for js� tj � h:

The assumption requires a mild form of unpredictability of the h-step-ahead forecast

errors. Without this assumption there would be an asymptotic bias term in the limit distrib-

ution given below. Assumption 3 is a mild additional requirement that is easy to verify if the
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prediction errors are unpredictable in the following sense: E("t+j j"t; Zt; "t�1; Zt�1; : : :) = 0
for j � h:

We are now ready to present the limit distribution of the test statistic in the general

case.

Theorem 2 Suppose Assumptions 1, 2 & 3 or 1, 2�& 3 hold and �̂2"
p! �2": Under the null

hypothesis, H0 : �2 = 0; we have

Tn(�)
d!

qX
j=1

�j

�
2

Z 1

�
u�1Bj(u)dBj(u)�

Z 1

�
u�2Bj(u)

2du

�
;

where �1; : : : ; �q are the eigenvalues of ��1
, and Bj(u); j = 1; :::; q, are independent stan-

dard Brownian motion processes.

The limit distribution of the test statistic in Theorem 2 can also be expressed as

2

Z 1

�
u�1B0(u)�dB(u)�

Z 1

�
u�2B0(u)�B(u)du; (12)

where � = diag(�1; : : : ; �q), and we denote the CDF of this distribution by F�;� where

� = (�1; : : : ; �q): The standard Brownian motion, B; is a simple orthonormal rotation of

that used in Theorem 1, so the two need not be identical unless q = 1:

The expression for the limit distribution in Theorem 2 involves two types of random

variables. The stochastic integral,
R 1
� u

�1B0(u)�dB(u); arises from the recursive estimation

scheme. Stated somewhat informally, prediction errors map into dB(u) and parameter

estimation errors map into B(u): In the recursive estimation scheme the former in�uences

the latter in subsequent predictions. The second term, �
R 1
� u

�2B0(u)�B(u)du; is a non-

positive random variable that characterizes the prediction loss that arises from estimation

error of additional parameters.

Our expression for the asymptotic distribution in Theorem 2 is simpler than that de-

rived in Clark & McCracken (2005). For instance, our expression simpli�es the nuisance

parameters to a diagonal matrix, �; as opposed to a full q� q matrix. Moreover, it is quite
intuitive that the �weights�, �1; : : : ; �q; that appear in the diagonal matrix, �, are given as

eigenvalues of ��1
, because the two matrices play a similar role to that of the two types

of information matrices that can be computed in quasi maximum likelihood analysis, see

e.g. White (1994).
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The eigenvalues, �1,..., �q; can be consistently estimated as the eigenvalues of �̂�1
̂;

where

�̂ = �̂2"
1

n

nX
t=1

Ẑt�hẐ
0
t�h, 
̂ =

X
i

k( ibn )�̂i; (13)

where k(�) is a kernel function, e.g. the Parzen kernel, bn is a bandwidth parameter, and

�̂j =
1

n

nX
t=1

Ẑt�hẐ
0
t�h�j "̂t"̂t�j ; (14)

with Ẑt = X2t�
Pt
s=1X2sX

0
1s(
Pt
s=1X1sX

0
1s)

�1X1t and "̂t = yt� �̂
0
t�hXt�h: In the absence

of autocorrelation in Zt�h"t, which may be applicable when h = 1; one can use the estimate


̂ = 1
n

Pn
t=1 Ẑt�1Ẑ

0
t�1"̂

2
t . In the homoskedastic case, �

2
" = E["2t jZt�h] = E["2t ], � = Iq�q;

we can simplify the notation F�;� to F�;q. This is consistent with the notation used in our

simpli�ed (univariate and homoskedastic) example. The homoskedastic result is well known

in the literature, see McCracken (2007).

2.3 Simpli�cation of Stochastic Integrals

Generating critical values for the distribution of 2
R 1
� u

�1BdB �
R 1
� u

�2B2du has so far

proven computationally burdensome because it involves both a discretization of the un-

derlying Brownian motion and drawing a large number of simulations. McCracken (2007)

presents a table with critical values based on a 5,000-point discretization of the Brownian

motion and 10,000 repetitions. This design makes the �rst decimal point in the critical

values somewhat accurate. The analytical result in the next Theorem provide a major

simpli�cation of the asymptotic distribution.

Theorem 3 Let B(u) be a standard Brownian motion and � 2 (0; 1): Then

2

Z 1

�
u�1B(u)dB(u)�

Z 1

�
u�2B(u)2du = B2(1)� ��1B2(�) + log �: (15)

This Theorem establishes that the limit distribution is given as a very simple transfor-

mation of two random variables. Apart from the constant, log �; the distribution is simply

the di¤erence between two (dependent) �21-distributed random variables, as we next show:

Corollary 1 Let Z1 and Z2 be independently distributed, Zi � N(0; 1); i = 1; 2: Then the

distribution in Theorem 3 is given byp
1� �(Z21 � Z22 ) + log �:
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Because the distribution is expressed in terms of two independent �2-distributed random

variables, in some cases it is possible to obtain relatively simple closed form expressions in

the homoskedastic case where �1 = � � � = �q = 1.

Corollary 2 The density of
Pq
j=1

h
2
R 1
� u

�1Bj(u)dBj(u)�
R 1
� u

�2Bj(u)2du
i
is for q = 1;

given by

f1(x) =
1

2�
p
1��K0(

jx�log �j
2
p
1�� );

where K0(x) =
R1
0

cos(xt)p
1+t2

dt is the modi�ed Bessel function of the second kind, and for q = 2

we have

f2(x) =
1

4
p
1�� exp

�
� jx�2 log �j

2
p
1��

�
;

which is simply the noncentral Laplace distribution.

These results greatly simplify calculation of critical values for the limiting distribution

of the test statistics and we next make use of the results to illustrate the rejection rates

induced by mining over the sample split. The densities when q = 3; 4; 5; : : : can be obtained

as convolutions of those stated in Corollary 2.

When q = 2, We get the CDF analytically:

F2(x) =

8<:
1
2 exp

�
x=2�log �p

1��

�
x < log �

1� 1
2 exp

�
�x=2+log �p

1��

�
x � log �

:

The associated critical values are therefore given from the quantile function

F�12 (p) =

�
2[log �+

p
1� � log(2p)] p < 0:5;

2[log ��
p
1� � log(2(1� p))] p � 0:5:

In the present context we reject the null for large values of the test statistic, so for � < 0:5

the critical value, c�2 , is found by setting p = 1� �: Hence,

c�2 = 2[log ��
p
1� � log(2�)]; � � 0:5:

2.3.1 Rejection Rates Induced by Mining over the Sample Split

When the sample is divided so that a predetermined fraction, �, is reserved for initial es-

timation of model parameters, and the remaining fraction, 1 � �, is left for out-of-sample
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evaluation, we obtain the Tn(�)-statistic. This statistic can be used to test the null hypoth-

esis, �2 = 0, by simply comparing it to the critical values from F�;�: For instance, if c�(�)

is the 1� � quantile of F�;�; i.e. c�(�) = F�1�;�(1� �), it follows that

lim
n!1

Pr(Tn(�) > c�(�)) = �:

Suppose instead that the out-of-sample test statistic, T�, is computed over a range of

split points, 
 � � � 1 � 
, in order to �nd a split point where the alternative is most

favored by the data. This corresponds to mining over the sample split, and the inference

problem becomes similar to the situation where one tests for structural change with an

unknown change point, see e.g. Andrews (1993).

To explore the importance of such mining over the sample split for the actual rejection

rates, we compute how often the test based on the asymptotic critical values in McCracken

(2007) would reject the null of no predictability.

Table 1 presents the actual rejection rates based on the asymptotic critical values in Mc-

Cracken (2007) for � = 0:01; 0:05; 0:10; 0:20, using q = 1; :::; 5 additional predictor variables

in the alternative model. These numbers are computed as the proportion of paths, i, for

which at least one rejection of the null occurs at the � level. The computations are based on

N = 10; 000 simulations (simulated paths) and a discretization of the underlying Brownian

motion, B(u) � 1p
n

Pbunc
i=1 zi; with n = 10; 000 and zi � iidN(0; 1): The results are very

strong. For example, with one additional regressor (q = 1), a test for no predictability that

would reject 5% of the time if conducted for a �xed sample split, rejects three times as often

as a result of mining over the sample split point, namely 14.8% of the time. Moreover, this

rejection rate increases to nearly 22% as q rises from one to �ve.

Similar results hold no matter which critical level the test is conducted at. For example,

at the � =1% critical level, mining over the sample split point leads to rejection rates

between 3.7% and 5.5%, both far larger than the nominal critical level. When the test is

conducted at the � =10% critical level, the test that mines over split points actually rejects

between 25% and 38% of the time for values of q between one and �ve, while for � = 20%,

rejection rates above 60% are observed for the larger models.
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3 Power of the Test

The scope for size distortions of conventional tests of predictive accuracy is only one issue

that arises when considering the sample split for forecast evaluation purposes, with the

power of the test also mattering. Earlier we found that the risk of spuriously rejecting the

null is highest when the sample split occurs towards the end of the sample. This section

shows that, in contrast, the power of the predictive accuracy test is highest when the start

of the forecast evaluation period occurs early in the sample.

Under a local alternative hypothesis we have the following result:

Theorem 4 Suppose that Assumptions 2-3 hold, and consider the local alternative �n;2 =
cp
n
a0; where a 2 Rq with a0�zza = ��2" : Then

Tn(�)
d! c2(1� �) + 2 c

�"
a0
1=2Q0 [B(1)�B(�)]

+

qX
j=1

�j
�
B2j (1)� ��1B2j (�) + log �

�
;

where the matrix Q and � = diag(�1; : : : ; �q) are obtained from Q0�Q = 
1=2��1
1=2:

This Theorem establishes the analytical theory that underlies the simulation results

presented in Tables 4 and 5 in Clark & McCracken (2001), particularly the large increase

in power resulting when �2 is moved away from zero.

For a given sample size and a particular alternative of interest, e.g., �2 = b, the theorem

yields an asymptotic approximation to the �nite sample distribution. To this end, simply

set a = 1
�b, where �

2 = �2"b
0�zzb and c = �

p
n;so that a0�zza = ��2" and b = cp

n
a:

3.1 Local Power in the Illustrative Example

In our illustrative example from Section 2.1 a local alternative takes the form

� =
cp
n
�";

(since a0�zza = ��2" with �zz = 1 implies a = �") and so the limit distribution is given by

Tn(�)
d! B2(1)� ��1B2(�) + c2(1� �) + 2c [B(1)�B(�)] : (16)

The power depends on the split point, which can be illustrated by the distribution of the p-

value under the local alternative. Recall that the p-value is de�ned by p(�) = 1�F�;1(Tn(�)).
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Figure 3 presents the distribution of p(�) as a function of size, �, for two local alternatives,

c = 1 and c = 2; and three sample split ratios, � = 0:25; � = 0:50; and � = 0:75: The two

upper panels set c = 1 while the lower panels set c = 2: The right panels zoom in on the

lower left corner of the left panels. If a 5% critical value is used, the upper panels (c = 1)

show that the power of the test will be about 16%, 14%, and 13% for � = 0:25; � = 0:50

and � = 0:75, respectively. For c = 2 (lower panels) the power is 45%, 39%, and 33% for

� = 0:25; � = 0:50 and � = 0:75, respectively. Hence, the power is substantially higher with

� = 0:25 than � = 0:75:

Empirical studies tend to use a relatively large estimation (in-sample) period, i.e., a

large �. This is precisely the range where one is most likely to �nd spurious rejections of

the null hypothesis. In fact, the power of the Tn(�) test provides a strong argument for

adopting a smaller (initial) estimation sample, i.e., a small value of �.

While this �nding is in line with that of Inoue & Kilian (2004), it raises important

questions concerning the appropriateness of testing the null hypothesis �0 = 0 using the

test statistic Tn(�): Under a recursive estimation scheme, a short initial estimation sample

is associated with greater estimation errors and hence will tend to drag down forecasting

performance, particularly at the beginning of the sample. However, it also results in a

longer out-of-sample evaluation window and the concomitant higher power. A long initial

estimation sample reduces the e¤ect of estimation error on the initial forecasts, but also

lowers the power due to the shorter evaluation sample. The trade-o¤between these e¤ects is

complicated by the highly persistent nature of parameter estimation errors when a recursive

estimation scheme is used to generate forecasts. Further discussion of this point is beyond

the scope of the present paper.

4 A Split-Mining Robust Test

The results in Table 1 demonstrate that mining over the start of the out-of-sample period

can substantially raise the rejection rate when its e¤ects are ignored. A question that

naturally arises from this �nding is whether a test can be designed that is robust to sample

split mining in the sense that it will correctly reject (at the stipulated rate) even if such

mining took place.

To address this, suppose we want to guard ourselves against mining over the range
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� 2 [
; 1� 
]. One possibility is to consider the maximum value of Tn(�) across a range of

split points. However, max�2[
;1�
] Tn(�) is ill-suited for this purpose, because the marginal

distribution of Tn(�) varies a great deal with �: The resulting heteroskedasticity across

di¤erent ��values means that the max-Tn(�) statistic implicitly favors certain values of �.
Instead, we propose to �rst translate the test statistics for each of the sample split

points into nominal p-values, p(�) = 1�F�;�(Tn(�)). In a second step, the smallest p-value
is computed:

pmin = min
�2[
;1�
]

p(�):

Because each of the p-values, p(�); are uniformly distributed on the unit interval (asymp-

totically) the resulting test statistic is constructed from test statistics with similar prop-

erties, see, e.g., Westfall & Young (1993). The limit distribution of pmin will clearly not

be uniformly distributed and so cannot be interpreted as a valid p-value, but should in-

stead be viewed as a test statistic, whose distribution we seek. To this end, let B denote a

q-dimensional standard Brownian motion and for u 2 (0; 1) de�ne

G(u) = B(1)0�B(1)� u�1B(u)0�B(u) + log u:

To establish the asymptotic properties of pmin we will need a stronger convergence

result than that used to derive the distribution of Tn(�) for a �xed value of �. The stronger

result holds under the mixing assumption, but has not been established under near-epoch

assumptions.

So in conjunction with our near-epoch assumptions (Assumption 2) we need to make

the following assumption.

Assumption 4 For 0 < 
 � 1=2

Tn(u)) G(u) on D[
;1�
]:

It is worth noting that the near-epoch conditions are the weakest set of assumptions

needed for the functional central limit theorem and the (point-wise) convergence to the

stochastic integral, see De Jong & Davidson (2000). Hence, Assumption 4 may turn out to

be implied by Assumptions 1-3 and be redundant in the present context.

[So

Assumption 4 requires a joint convergence that is stronger than the point-wise result

established earlier. A closely related result, which appears in the literature on unit roots, is
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n�1
Pbnuc
t=1

Pt�1
s=1 "s"t ) �2"

R u
0 B(s)dB(s); u 2 [0; 1]: This joint convergence is known to hold

under several sets of assumptions, including the mixing assumptions used in this paper, see

Hansen (1992). However, the joint convergence has not been established with near-epoch

assumptions, such as
Pbnuc
t=1

Pt�1
s=1 "s"t

d! �2"
R u
0 B(s)dB(s) for a particular value of u;. ]

Theorem 5 Given Assumptions 1-4 or Assumptions 1, 2�and 3, pmin converges in distri-

bution, and the cdf of the limit distribution is given by

F (�) = Prf sup

�u�1�


[G(u)� c�(u)] � 0g; � 2 [0; 1];

where G(u) is given above and

c�(u) = F�1u;�(1� �):

Using this result we can numerically compute the p-value adjusted for sample split

mining by sorting the pmin-values for a large number of sample paths and choosing the

�-quantile of this (ranked) distribution.

Table 2 shows how nominal p-values translate into p-values adjusted for any split-mining.

For example, suppose a critical level of � = 5% is desired and that q = 1. Then the smallest

p-value computed using the McCracken (2007) test statistic at all possible split points

� 2 [0; 1; 0:9] should fall below 1.3% for the out-of-sample evidence to be signi�cant at the

5% level. This drops further to 1.1% when q = 2 and to a value below 0.1% (the smallest p-

value considered in our calculations) for values of q � 3. Similarly, with a nominal rejection
level of 10%, the smallest p-value (computed across all admissible sample splits) would have

to fall below 2.9% when q = 1 and below 2% when q = 5. Clearly, mining over the sample

split brings the adjusted critical values much further out in the tail of the distribution.

The robust test is related to the literature on multiple hypotheses testing. Each sample

split results in a hypothesis test, with the special circumstance in the present context being

that it is the same hypothesis that is being tested at every sample split. The test procedure

we have proposed in this section seeks to control the familywise error rate. Combining

p-values (rather than test statistics with distinct limit distributions) creates a degree of

balance across hypothesis tests.

In a related paper, Rossi & Inoue (2011) consider methods for out-of-sample forecast

evaluation that are robust to data snooping over the length of the estimation window and

accounts for parameter instability. Although their analysis focuses on the case with a rolling
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estimation window, they also consider comparisons of nested models based on recursive

estimation in an appendix of their paper. Under the recursive estimation scheme, the

fraction of the sample used for the (initial) window length is identical to the choice of

sample split, �; which is the focus of our paper. Despite the similarities in this special case,

their approach is substantially di¤erent from ours. First, their theoretical setup (e.g., Rossi

& Inoue (2011, assumption 2�)) directly assumes that partial sums of mean squared error

di¤erentials obey a functional central limit theorem. This high-level assumption cannot

be reconciled with Theorems 2 and 3 in our paper. Consequently their results will be

di¤erent. For instance, the number of extra parameters in the larger model, q; plays a key

role in our limit results, but does not show up in the limit results Rossi & Inoue (2011).

While we are unaware of primitive assumptions that would justify their assumptions in

comparisons of nested models under recursive estimation, Rossi & Inoue (2011) provide

simulation evidence that suggests their approach may control the type I error rate. Second,

Rossi and Inoue provide �nite-sample simulation results to illustrate the power of their

test, whereas we have analytical power results. Third, they construct a test statistic as

the supremum over di¤erent window sizes of either an adjusted MSE test as in Clark &

West (2007) or a more conventional forecast performance test based on the di¤erential mean

squared forecast errors. Instead, we propose a minimum p-value test which makes the test

statistics corresponding to di¤erent sample splits more comparable. The empirical �ndings

in Rossi & Inoue (2011) are consistent with ours, however, and con�rm that data snooping

over the choice of estimation window can lead to signi�cant size distortions, particularly in

the presence of breaks in the model parameters.

4.1 A Simple Robustness Check

Researchers may be aware of the problem arising if multiple values for the sample split,

�, have been considered and so may only look at a single value of �, although their choice

may be in�uenced by what other researchers have done. For such researchers the previous

approach could be too conservative. If all researchers could agree ex ante on a common split

ratio, �� say, and all reported p(��), it would eliminate the problems arising from mining

over split points.

One possible suggestion is to always report the p-value computed at � = 0:50. In speci�c

applications there might be good arguments for using a di¤erent sample split, yet in such
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cases it would still be bene�cial to report p0:5 in conjunction with the �preferred�value of

�: For instance if both values are signi�cant it o¤ers some protection against the criticism

that the split point was selected through split mining because, when n is large,

Pr(p(�) � �; p0:5 � �) � Pr(p0:5 � �) � �:

5 Empirical Examples

This section provides empirical illustrations of the methods and results discussed in the

previous sections. We consider two forecasting questions that have attracted considerable

empirical interest in economics and �nance, namely whether the corporate default spread

helps predict stock returns and whether in�ation forecasts can be improved by using broad

summary measures on the state of the economy in the form of common factors.

5.1 Predictability of U.S. stock returns

It is a long-standing issue whether returns on a broad U.S. stock market portfolio can be

predicted using simple regression models, see, e.g., Keim & Stambaugh (1986), Campbell

& Shiller (1988), Fama & French (1988), and Campbell & Yogo (2006). While these stud-

ies were concerned with in-sample predictability, papers such as Pesaran & Timmermann

(1995), Campbell & Thompson (2008), Welch & Goyal (2008), Johannes, Korteweg & Pol-

son (2009), and Rapach et al. (2010) study return predictability in an out-of-sample context.

For example, in their analysis of forecast combinations spanning quarterly returns over the

period 1947-2005, Rapach et al. (2010) use three di¤erent out-of-sample periods, namely

1965-2005, 1976-2005, and 2000-2005. This corresponds to using the last 70%, 50% and

10% of the sample, respectively, for out-of-sample forecast evaluation.

Welch & Goyal (2008) �nd that so-called prevailing mean forecasts generated by a

constant equity premium model

yt+1 = �0 + "t+1; (17)

lead to lower out-of-sample MSE-values than univariate forecasts from a range of prediction

models of the form

yt+1 = �0 + �1xt + "t+1: (18)

We focus on models where xt is the default spread, measured as the di¤erence between the

yield on AAA-rated corporate bonds versus that on BAA-rated corporate bonds. Our data
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consist of monthly observations on stock returns on the S&P500 index and the corresponding

yield spread over the period from 1926:01 to 2008:12 (a total of 996 observations). Setting


 = 0:1, our initial estimation sample uses one hundred observations and so the beginning

of the various forecast evaluation periods runs from 1934:05 through 2000:04. The end point

of the out-of-sample period is always 2008:12.

The top window in Figure 4 shows how the Tn(�)-statistic evolves over the forecast

evaluation period.3 The minimum value obtained for Tn(�) is �6.79, while its maximum
is 2.18. Due to the partial overlap in both estimation and forecast evaluation windows, as

expected, the test statistic evolves relatively smoothly and is quite persistent, although the

e¤ect of occasional return outliers is also clear from the plot. Towards the end of the sample

(where � is close to 0.90), the test statistic shows a mild upward drift.

The p(�)-values associated with the Tn(�) statistics computed for di¤erent values of � are

plotted in the bottom window of Figure 4. There is little evidence of return predictability

when the out-of-sample period begins after the mid-seventies. However, once the forecast

evaluation period is expanded backwards to include the early seventies, evidence of pre-

dictability grows stronger. This is consistent with the �nding by Pesaran & Timmermann

(1995) and Welch & Goyal (2008) that return predictability was particularly high after

the �rst oil shock in the seventies. For out-of-sample start dates running from the early

�fties to the early seventies, p-values below 5-10% are consistently found. In contrast, had

the start date for the out-of-sample period been chosen either before or after this period,

then forecast evaluation tests, conducted at conventional critical levels, would have failed

to reject the null of no return predictability.

The sensitivity of the empirical results to the choice of � highlights the need to have a

test that is robust to how the start of the out-of-sample period is determined. In fact, the

smallest p-value, selected across the entire out-of-sample period � 2 [0:1; 0:9] is 0.03. Table 2
suggests that this corresponds to a split-mining adjusted p-value that exceeds 10%. Hence,

the evidence of time-varying return predictability from the yield spread is not statistically

signi�cant at conventional levels. We cannot therefore conclude that the lagged default

spread model generates more precise out-of-sample forecasts of stock returns than a constant

equity premium model, at least not in a way that is robust to the e¤ect of mining over the

3We use a Newey-West HAC estimator with four lags to estimate the variance of the residuals from the

forecast model, �̂2".
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beginning of the out-of-sample period.

To illustrate that some forecasting models are in fact robust to mining over the sample

selection split, we also considered a return forecasting model that uses the lagged dividend

yield as the predictor variable. Using the same sample as above, for this model we found

that the maximum value of Tn(�) was 5.27 and the smallest p-value fell below 0.001 which,

according to Table 2, means that out-of-sample predictability from this model is robust to

mining over the sample split. Interestingly, for this model, predictability is concentrated

towards the very end of the sample, i.e., from the late nineties and onwards, and does not

seem to be present for other subsamples, consistent with an alternative explanation related

to structural breaks in the forecast model.

5.2 In�ation Forecasts

Simple autoregressive prediction models have been found to perform well for many macro-

economic variables capturing wages, prices and in�ation (Marcellino, Stock &Watson (2006)

and Pesaran, Pick & Timmermann (2010)). However, as illustrated by the many studies

using factor-augmented vector autoregressions and other factor-based forecasting models,

it is also of interest to see whether the information contained in common factors, extracted

from large-dimensional data, can help improve forecasting performance.

To address this issue, we consider out-of-sample predictability of U.S. in�ation measured

by the monthly log �rst-di¤erence in the consumer price index (CPI) captured by the

CPIAUSCL series. Our benchmark is a simple autoregressive speci�cation with two lags:

yt+1 = �0 +
2X
i=1

�yiyt+1�i + "y;t+1; (19)

where yt+1 = log(CPIt+1=CPI) is the monthly growth rate in the consumer price index.

The alternative forecasting model adds four common factors to the AR(2) speci�cation

in Eq. (19):

yt+1 = �0 +

2X
i=1

�yiyt+1�i +
4X
i=1

�fif̂it + "y;t+1: (20)

Here f̂it is the i-th principal component (factor) extracted from a set of 131 economic

variables. Data on these 131 variables is taken from Ludvigson & Ng (2007) and run from

1960 through 2007. We extract factors recursively from this data, initially using the �rst
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ten years of the data so the �rst point of factor construction is 1969:12. Setting 
 = 0:1,

the out-of-sample forecasting period runs from mid-1973 through early 2004.

The top window in Figure 5 shows the Tn(�)-statistic for di¤erent values of �. This

rises throughout most of the sample from around -23 to a terminal value just above zero.

The associated p(�)-values are shown in the bottom window of Figure 5. These start close

to one but drop signi�cantly after the change in the Federal Reserve monetary policy in

1979. Between 1980 and 1982, the p(�) plot declines sharply to values below 0.10, before

oscillating for much of the rest of the sample, with an overall minimum p-value is 0.023.

Hence, in this example a researcher starting the forecast evaluation period after 1979 and

ignoring mining over the sample split might well conclude that the additional information

from the four factors helped improve on the autoregressive model�s forecasting performance.

Unless the researcher had reasons, ex ante, for considering only speci�c values of �, this

conclusion could be misleading since the split-mining adjusted test statistic is not signi�cant.

In fact, the globally minimum p-value of 0.023 is not even signi�cant at the 10% level when

compared against the split-mining adjusted p-values in Table 2.

6 Conclusion

Choice of the sample split used to divide data into an in-sample estimation period and an

out-of-sample evaluation period a¤ects out-of-sample forecast evaluation tests in fundamen-

tal ways, yet has received little attention in the forecasting literature. As a consequence,

this choice variable is often selected without regard to the properties of the predictive accu-

racy test or the possible size distortions that result when the sample split is chosen to most

favor the forecast model under consideration.

When multiple split points are considered and, in particular, when researchers�individually
or collectively�may have mined over the split point, forecast evaluation tests can be grossly
over-sized, leading to spurious evidence of predictability. In fact, the nominal rejection rates

can be more than tripled as a result of such mining over the split point, and the danger of

spurious rejection tends to be highest when a short evaluation window is used, i.e., when

the out-of-sample period begins late in the sample. Conversely, power is highest when the

out-of-sample period is as long as possible and so the evaluation window begins early.

Two empirical applications show that choice of sample split can have important conse-
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quences in practice for conclusions on whether economic time-series are predictable. Varia-

tions in U.S. stock returns do not appear to be predictable by means of the lagged default

spread, nor does U.S. consumer price in�ation appear to be predictable by means of common

factors in a way that is robust to how the start of the out-of-sample period is selected.

References
Andrews, D. W. K. (1993), �Test for parameter instability and structural change with unknown change

point�, Econometrica 61, 821�856.

Campbell, J. & Shiller, R. (1988), �Stock prices, earnings and expected dividents�, Journal of Finance
46, 661�676.

Campbell, J. Y. & Thompson, S. B. (2008), �Predicting excess stock returns out of sample: Can anything
beat the historical average?�, Review of Financial Studies 21, 1509�1531.

Campbell, J. Y. & Yogo, M. (2006), �E¢ cient tests of stock return predictability�, Journal of Financial
Economics 81, 27�60.

Clark, T. E. & McCracken, M. W. (2001), �Tests of equal forecast accuracy and encompassing for nested
models�, Journal of Econometrics 105, 85�110.

Clark, T. E. & McCracken, M. W. (2005), �Evaluating direct multi-step forecasts�, Econometric Reviews
24, 369�404.

Clark, T. E. & West, K. D. (2007), �Approximately normal tests for equal predictive accuracy in nested
models�, Journal of Econometrics 127, 291�311.

De Jong, R. M. & Davidson, J. (2000), �The functional central limit theorem and convergence to stochastic
integrals I: Weakly dependent processes�, Econometric Theory 16, 621�642.

Diebold, F. X. & Rudebusch, G. (1991), �Forecasting output with the composite leading index: A real-time
analysis�, Journal of American Statistical Association 86, 603�610.

Fama, E. F. & French, K. R. (1988), �Dividend yields and expected stock returns�, Journal of Financial
Economics 22, 3�25.

Hansen, B. (1992), �Convergence to stochastic integrals for dependent heterogeneous processes�, Econometric
Theory 8, 489�500.

Hansen, P. R. (2005), �A test for superior predictive ability�, Journal of Business and Economic Statistics
23, 365�380.

Inoue, A. & Kilian, L. (2004), �In-sample or out-of-sample tests of predictability: Which one should we use?�,
Econometrics Reviews 23, 371�402.

Inoue, A. & Kilian, L. (2008), �How useful is bagging in forecasting economic time series? a case study of
u.s. consumer price in�ation�, Journal of American Statistical Association 103, 511�522.

Johannes, M., Korteweg, A. & Polson, N. (2009), �Sequential learning, predictive regressions, and optimal
portfolio returns�, Mimeo, Columbia University .

Keim, D. & Stambaugh, R. (1986), �Predicting returns in the stock and bond markets�, Journal of Financial
Economics 17, 357�390.

Ludvigson, S. & Ng, S. (2007), �The empirical risk-return relation: A factor analysis approach�, Journal of
Financial Economics 83, 171�222.

Marcellino, M., Stock, J. H. & Watson, M. W. (2006), �A comparison of direct and iterated multistep ar
methods for forecasting macroeconomic time series�, Journal of Econometrics 135, 499�526.

24



McCracken, M. W. (2007), �Asymptotics for out-of-sample tests of granger causality�, Journal of Economet-
rics 140, 719�752.

Patton, A. & Timmermann, A. (2007), �Testing forecast optimality under unknown loss�, Journal of Amer-
ican Statistical Association 102, 1172�1184.

Pesaran, M. H., Pick, A. & Timmermann, A. (2010), �Variable selection, estimation and inference for multi-
period forecasting problems�, working paper .

Pesaran, M. H. & Timmermann, A. (1995), �Predictability of stock returns: Robustness and economic
signi�cance�, Journal of Finance 50, 1201�1228.

Politis, D. N. & Romano, J. P. (1995), �Bias-corrected nonparametric spectral estimation�, Journal of time
series analysis 16, 67�103.

Rapach, D. E., Strauss, J. K. & Zhou, G. (2010), �Out-of-sample equity premium prediction: Combination
forecasts and links to the real economy�, Review of Financial Studies 23, 821�862.

Rossi, B. & Inoue, A. (2011), �Out-of-sample forecast tests robust to the window size choice�, working paper,
Duke University .

Stock, J. H. & Watson, M. W. (1999), �Forecasting in�ation�, Journal of Monetary Economics 44, 293�335.

Stock, J. H. & Watson, M. W. (2002), �Forecasting using principal components from a large number of
predictors�, Journal of the American Statistical Association 97, 1167�1179.

Sullivan, R., Timmermann, A. & White, H. (1999), �Data-snooping, technical trading rules, and the boot-
strap.�, Journal of Finance 54, 1647�1692.

Welch, I. & Goyal, A. (2008), �A comprehensive look at the empirical performance of equity premium
prediction�, The Review of Financial Studies pp. 1455�1508.

West, K. D. (1996), �Asymptotic inference about predictive ability�, Econometrica 64, 1067�1084.

Westfall, P. H. & Young, S. S. (1993), Resampling-Based Multiple Testing: Examples and Methods for p-Value
Adjustments, Wiley, New York.

White, H. (1994), Estimation, Inference and Speci�cation Analysis, Cambridge University Press, Cambridge.

White, H. (2000a), Asymptotic Theory for Econometricians, revised edn, Academic Press, San Diego.

White, H. (2000b), �A reality check for data snooping�, Econometrica 68, 1097�1126.

Wooldridge, J. M. & White, H. (1988), �Some invariance principles and central limit theorems for dependent
heterogeneous processes�, Econometric Theory 4, 210�230.

Appendix of Proofs

A.1 Derivations related to the simple example

Suppose that � = c�"=
p
n. Then, from Equations (1)-(4), we have

Dn(�) =

nX
t=n�+1

(yt � ŷbtjt�1)
2 � (yt � ŷtjt�1)2

=

nX
t=n�+1

(yt � � + �)2 � [yt � � � (�̂t�1 � �)]2

=
nX

t=n�+1

("t + �)
2 �

�
"t � 1

t�1

t�1P
s=1

"s

�2

25



=
nX

t=n�+1

�2 + 2�"t �
�

1
t�1

t�1P
s=1

"s

�2
+ 2

�
1
t�1

t�1P
s=1

"s

�
"t:

Now de�ne

Wn(u) =
1p
n

buncP
s=1

"s; u 2 [0; 1]:

By Donsker�s Theorem
Wn(u)) �"B(u);

where B(u) is a standard Brownian motion. Hence,

nX
t=n�+1

�
1
t�1

t�1P
s=1

"s

�2
=

1

n

nX
t=n�+1

�
n
t�1Wn(

t�1
n )
�2

d! �2"

Z 1

�
u�2B(u)2du:

nX
t=n�+1

�
1
t�1

t�1P
s=1

"s

�
"t =

nX
t=n�+1

n
t�1Wn(

t�1
n )
�
Wn(

t
n)�Wn(

t�1
n )
�

d! �2"

Z 1

�
u�1B(u)dB(u):

nX
t=n�+1

�2 + 2�"t = (n� n�)
�2"c

2

n
+ 2

�"cp
n

nX
t=n�+1

"t

= c2�2"(1�
n�
n
) + 2c�"

�
Wn(1)�Wn(

n�
n )
�

d! �2"
�
c2(1� �) + 2c [B(1)�B(�)]

	
:

A.2 Proof of Theorem 1

By Assumption 1 it follows that E(Zt�h"t) = 0 and that 
 is well de�ned. Under the
mixing assumptions (Assumptions 1 & 2�) the result follows from Wooldridge & White
(1988, corollary 4.2), see also Hansen (1992).

Under the near-epoch dependence assumptions (Assumptions 1 & 2) the result we can
rely on results in De Jong & Davidson (2000) by adapting these to our framework. These
assumptions are the weakest known, see also White (2000a, theorems 7.30 and 7.45) who
adapt their results to a setting with global covariance stationary mixing processes.

De�ne Ut = vech(VtV
0
t � �vv) and consider Xnt = !0Ut=

p
n for some arbitrary vector

!; so that !0	! = 1; where 	 = var[n�1=2
Pn
t=1 vech(VtV

0
t � �vv)], which is well de�ned

under Assumption 1. We verify the conditions in De Jong & Davidson (2000, Assumption
1) for Xnt: Their assumption has four parts, (a)-(d). Since Xt is L4-NED of size �1

2 on Vt,
it follows that Xnt is L2-NED of the same size on Vt where we can set dnt = dt=

p
n: This

proves the �rst part of (c) and part (a) follows directly from E(Ut) = 0 and !0	! = 1: Part
(b) follows with cnt = n�1=2 and the last part of (c) follows because dnt=cnt = dt is assumed
to be uniformly bounded. The last condition, part (d), is trivial when cnt = n�1=2:
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As a corollary to De Jong & Davidson (2000, Theorem 4.1) we have that Wn(u) =

n�1=2
Pbunc
t=1 Ut ) W(u); where W(u) is a Brownian motion with covariance matrix 	:

From this it also follows that

sup
u2(0;1]

������ 1n
buncX
t=1

VtV
0
t � u�vv

������ = op(1); (A.1)

which we will use in our proofs below. Moreover, De Jong & Davidson (2000, Theorem 4.1)
establishes the joint convergence 

Wn(u);

nX
t=1

Wn(
t�1
n )[Wn(

t
n)�Wn(

t�1
n )]�An

!
)
�
W(u);

Z 1

0
W(u)dW(u)0)

�
;

where An = 1
n

Pn
t=1

Pt�1
s=1 EUsU 0t:

Now de�ne the matrices

L = (0q�1;��21��111 ; Iq�q) and R = (1;���1xx�xy):
Then it is easy to verify that L�vvR0 = 0 and

Zt�h"t = LVtV
0
tR

0 = L(VtV
0
t � �vv)R0;

so that the convergence results involving fZt�h"tg follow from those of VtV 0t ��vv: Thus we
only need to express the asymptotic bias term and the variance of the Brownian motion.

De�ne Unt = Zt�h"t=
p
n; Wn(u) =

Pbunc
t=1 Unt; and write

R s
0 WdW

0 as short for
R s
0 W (u)dW (u)

0:
Theorem 1 now follows as a special case of the following theorem:

Theorem A.1 Given Assumptions 2-1 we have Wn )W , and if in addition Assumptions

3 holds, we have  
Wn;

nX
t=1

t�hX
s=1

UnsU
0
nt

!
)
�
W;

Z 1

0
WdW 0

�
:

Proof. From De Jong & Davidson (2000, Theorem 4.1) it follows that 
Wn;

nX
t=1

t�1X
s=1

UnsU
0
nt �An

!
)
�
W;

Z 1

0
WdW 0

�
;

where An =
Pn
t=1

Pt�1
s=1 EUnsU

0
nt: Moreover,

Pn
t=1

Pt�1
s=1 UnsU

0
nt �

Pn
t=1

Pt�h
s=1 UnsU

0
nt =Pn

t=1

Ph�1
j=1 Un;t�jU

0
nt, where

nX
t=1

h�1X
j=1

(Un;t�jU
0
nt � EUn;t�jU 0nt) = op(1):

By Assumption 3 it follows that EUnsU 0nt = 0 for js�tj � h; so thatAn =
Pn
t=1

Ph�1
j=1 EUn;t�jU

0
nt;

and the result follows.
For h-step-ahead forecasts, we expect non-zero autocorrelations up to order h�1: These

autocorrelations do not, however, a¤ect the asymptotic distribution due to the construction
of the empirical stochastic integral,

Pn
t=1

Pt�h
s=1 UnsU

0
nt =

R
Wn(

t�h
n )dWn(

t
n)
0, where the

�rst term is evaluated at t�hn rather than t�1
n :
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A.3 Proof of Theorem 2

The proof of Theorem 2 follows from the proof of Theorem 4 by imposing the null hypothesis,
i.e., by setting c = 0.

A.4 Proof of Theorem 3

We give two proofs. The �rst proof uses Ito stochastic calculus and the second does not.
Proof. Theorem 3 follows by Ito calculus. Consider Ft = 1

tB
2
t � log t; for t > 0 so that

@Ft=@Bt =
2
tBt; @2Ft=(@Bt)

2 = 2
t ; and @Ft=@t = �

�
1
t2
B2t +

1
t

�
:

The by Ito stochastic calculus we have

dFt =
h
@Ft
@t +

1
2
@2Ft
(@Bt)2

i
dt+ @Ft

@Bt
dBt = � 1

t2
B2t dt+

2
tBtdBt;

so that Z 1

�

2
tBtdBt �

Z 1

�

1
t2
B2t dt =

Z 1

�
dFt = F1 � F� = B21 �B2�=�+ log �:

Theorem 3 can also be proved directly without the use of Ito calculus, using the following
simple result.

Lemma A.1 If bt = bt�1 + "t; then 2bt�1"t = b2t � b2t�1 � "2t :

Proof.

bt�1"t = (bt � "t)"t = bt(bt � bt�1)� "2t = b2t � btbt�1 � "2t
= b2t � (bt�1 + "t)bt�1 � "2t = b2t � b2t�1 � bt�1"t � "2t :

Rearranging yields the result.
Proof. De�ne bn;t = B( tn) and "n;t = bn;t� bn;t�1: Our stochastic integrals are given as the
probability limits of

2
nX

t=�n

n
t bn;t�1"n;t �

1

n

nX
t=�n

�
n
t

�2
b2n;t:

Throughout we assume that �n is an integer to simplify notation. From Lemma A.1 we
have

2

nX
t=�n

n
t bn;t�1"n;t =

nX
t=�n

n
t (b

2
n;t � b2n;t�1)�

nX
t=�n

n
t "
2
n;t;

and one can verify that
nX

t=�n

n
t "
2
n;t

p! � log �;
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using that E
�Pn

t=�n
n
t "
2
n;t

�
=
Pn
t=�n

n
t E
�
"2n;t
�
=
Pn
t=�n

n
t
1
n and that

1

n

nX
t=�n

n
t
d!
Z 1

�

1

u
du = log 1� log �:

Next, consider

nX
t=n�+1

n
t (b

2
n;t � b2n;t�1) = b2n;n + n

n�1X
t=n�+1

�
1
t �

1
t+1

�
b2n;t � n

n�
b2n;�n

= b2n;n +
1

n

n�1X
t=n�+1

n2

t2+t
b2n;t � (�+O(n�1))�1b2n;�n;

where the �rst and last terms equal B(1)2 and ���1B2(�), respectively. Since

1

n

n�1X
t=n�+1

n2

t2+t
b2n;t �

1

n

nX
t=n�+1

�
n
t

�2
b2n;t = op(1);

the result follows.

A.5 Proof of Corollary 1

Proof. Let U = B(1)�B(�)p
1�� and V = B(�)p

� so that B(1) =
p
1� �U +p�V , and note that U

and V are independent standard Gaussian random variables.
The distribution we seek is that of W =

�p
1� �U +p�V

�2�V 2+log �, where U; V �
iidN(0; 1); which can be expressed in the quadratic from:

W =

�
U
V

�0�
1� �

p
�(1� �)p

�(1� �) �� 1

��
U
V

�
+ log �:

Since a real symmetric matrix, A; can decomposed into A = Q�Q0 where Q0Q = I and �
is a diagonal matrix with the eigenvalues of A in the diagonal, we �nd that

W = Z 0
� p

1� � 0
0 �

p
1� �

�
Z + log �;

where Z � N2(0; I) (the vector Z is a simply rotation of (U; V )0). It follows that W =p
1� �(Z21 � Z22 ) + log �; which proves the result.

A.6 Proof of Corollary 2

Proof. Let Z1i;Z2i; i = 1; : : : ; q be iidN(0; 1); so thatX =
Pq
i=1 Z

2
1;i and Y =

Pq
i=1 Z

2
2;i are

both �2q-distributed and independent. The distribution we seek is given by the convolution,

qX
i=1

hp
1� �(Z21;i � Z22;i) + log �

i
=
p
1� �(X � Y ) + q log �;
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so we seek the distribution of S = X � Y where X and Y are independent �2q-distributed
random variables. The density of a �2q is

 (u) = 1fu�0g
1

2q=2�( q2)
uq=2�1e�u=2;

and we seek the convolution of X and �YZ
1fu�0g (u)1fu�s�0g (u� s)du =

Z 1

0_s
 (u) (u� s)du;

=

Z 1

0_s

1

2q=2�( q2)
uq=2�1e�u=2

1

2q=2�( q2)
(u� s)q=2�1e�(u�s)=2du

=
1

2q�( q2)�(
q
2)
es=2

Z 1

0_s
(u(u� s))q=2�1 e�udu:

For s < 0 the density is 2�q�( q2)
�2es=2

R1
0 (u(u� s))q=2�1 e�udu; and by taking advantage

of the symmetry about zero, we obtain the expression

1

2q�( q2)�(
q
2)
e�jsj=2

Z 1

0
(u(u+ jsj))q=2�1 e�udu:

When q = 1 this simpli�es to f1(s) = 1
2�B0(

jsj
2 ) where Bk(x) denotes the modi�ed Bessel

function of the second kind. For q = 2 we have the simpler expression f2(x) = 1
4e
� jsj

2 which
is the Laplace distribution with scale parameter 2:

A.7 Proof of Theorem 4

To prove Theorem 4, we �rst establish two lemmas.

Lemma A.2 The loss di¤erential (yt � ŷbtjt�h)
2 � (yt � ŷtjt�h)2 equals

�02Zt�hZ
0
t�h�2 + 2�

0
2Zt�h"t � 2�02Zt�hX 0

1;t�h(
~�1;t�h � �)

+2(�̂2;t�h � �2)0Zt�h"t � (�̂2;t�h � �2)0Zt�hZ 0t�h(�̂2;t�h � �2)

�2(�̂2;t�h � �2)0Zt�hX 0
1;t�h(

~�1;t�h � �)

��2t�h + 2�t�h
h
"t �X 0

1;t�h(
~�1;t�h � �)� Z 0t�h(�̂2;t�h � �2)

i
;

where �t = �̂
0
2;t(�21�

�1
11 �M21;tM

�1
11;t)X1;t with Mij;t =

Pt
s=1Xi;sX

0
j;s for i; j = 1; 2:

Proof. For the benchmark forecast in Eq. (7) we have

~�
0
1;tX1;t = �X1;t + �

0
2Zt + (

~�1;t � �)0X1;t � �02Zt;

where the true model assumes that yt+h = �0X1;t + �02Zt + "t+h. Hence the forecast error
from the benchmark model takes the form

yt+h � ~�
0
1;tX1;t = "t+h � (~�1;t � �)0X1;t + �02Zt:
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Similarly, for the alternative forecast in Eq. (9) we have

�̂
0
tXt = �̂

0
1;tX1;t + �̂

0
2;tX2;t

= (�̂
0
1;t + �̂

0
2;tM21;tM

�1
11;t)X1;t + �̂

0
2;t(X2;t �M21;tM

�1
11;tX1;t)

= ~�
0
1;tX1;t + �̂

0
2;t(X2;t �M21;tM

�1
11;tX1;t)

= ~�
0
1;tX1;t + �̂

0
2;t(X2;t � �21��111 X1;t) + �̂

0
2;t(�21�

�1
11 �M21;tM

�1
11;t)X1;t

= �0X1;t + �
0
2Zt + (

~�1;t � �)0X1;t + (�̂2;t � �2)0Zt + �t

so that
yt+h � �̂

0
tXt = "t+h � (~�1;t � �)0X1;t � (�̂2;t � �2)0Zt + �t:

Consider next the loss di¤erential, which from equations (7) to (9) is given by

(yt � ŷbtjt�h)
2 � (yt � ŷtjt�h)2

= (yt � ~�
0
1;t�hX1;t�h)

2 � (yt � �̂
0
t�hXt�h)

2

= ("t � (~�1;t�h � �)0X1;t�h + �02Zt�h)2

�
�
"t � (~�1;t�h � �)0X1;t�h � (�̂2;t�h � �2)0Zt�h + �t�h

�2
:

The result now follows by multiplying out.

Lemma A.3 With �2 =
cp
n
v for some v 2 Rq and given Assumptions 2-3 we have,

nX
b�nc+1

�02Zt�hZ
0
t�h�2

p! (1� �)c2v0�zzv (A.2)

nX
b�nc+1

�02Zt�h"t
d! cv0 [W (1)�W (�)] (A.3)

nX
b�nc+1

(�̂2;t�h � �2)0Zt�h"t
d!

Z 1

�

1

u
W (u)0��1zz dW (u); (A.4)

nX
b�nc+1

(�̂2;t�h � �2)0Zt�hZ 0t�h(�̂2;t�h � �2)
d!

Z 1

�

1

u2
W (u)0��1zz W (u)du (A.5)

nX
b�nc+1

�02Zt�hX
0
1;t�h(

~�1;t�h � �)
p! 0 (A.6)

nX
b�nc+1

(�̂2;t�h � �2)0Zt�hX 0
1;t�h(

~�1;t�h � �)
p! 0 (A.7)

nX
b�nc+1

�2t�h
p! 0 (A.8)
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nX
b�nc+1

�t�h"t
p! 0 (A.9)

nX
b�nc+1

�t�hX
0
1;t�h(

~�1;t�h � �)
p! 0 (A.10)

nX
b�nc+1

�t�hZ
0
t�h(�̂2;t�h � �2)

p! 0 (A.11)

Proof. To simplify notation, introduce

�n(�) =
1

n

b�ncX
t=1

Zt�hZ
0
t�h;

so that Zt�hZ 0t�h = n
�
�n(

t
n)� �n(

t�1
n )
�
and

�̂2;t � �2 =
1p
n
��1n (

t
n)Wn(

t
n):

The result for the �rst term, (A.2),

nX
b�nc+1

�02Zt�hZ
0
t�h�2 = c2v0 [�n(1)� �n(�)] v;

follows from (A.1). Similarly, (A.3) follows by,

�02

nX
b�nc+1

Zt�h"t = cv0 [Wn(1)�Wn(�)] ;

and Theorem A.1. Next,

nX
b�nc+1

(�̂2;t�h � �2)0Zt�h"t =

nX
t=b�nc+1

Wn(
t�h
n )

0��1n (
t
n)
�
Wn(

t
n)�Wn(

t�1
n )
�

=

nX
t=b�nc+1

Wn(
t�h
n )

0 1

u
��1zz

�
Wn(

t
n)�Wn(

t�1
n )
�
+ op(1);

where we again used (A.1). From Theorem A.1,
R 1
� Wn(u)dWn(u)

0 d!
R 1
� W (u)dW (u)

0, soZ 1

�
Wn(u)

0��1zz dWn(u) =

Z 1

�
tr
�
dWn(u)

0��1zz Wn(u)
	

= tr

�
��1zz

Z 1

�
Wn(u)dWn(u)

0
�

d! tr

�
��1zz

Z 1

�
WdW 0

�
=

Z 1

�
W 0��1zz dW:

32



Since � > 0, it follows that
R 1
�

n
buncWn(u)

0��1zz dWn(u)
d!
R 1
�
1
uW

0��1zz dW , proving part
(A.4):

The last non-vanishing term in (A.5) is given by:

1

n

nX
t=b�nc+1

Wn(
t�h
n )

0��1n (
t
n)Zt�hZ

0
t�h�

�1
n (

t
n)Wn(

t�h
n )

=
1

n

nX
t=b�nc+1

Wn(
t�h
n )

0��1n (
t
n)�zz�

�1
n (

t
n)Wn(

t�h
n )

+
1

n

nX
t=b�nc+1

Wn(
t�h
n )

0��1n (
t
n)
�
Zt�hZ

0
t�h � �zz

�
��1n (

t
n)Wn(

t�h
n ):

The last term in this expression isOp(n�1=2) because with Vn(u) = 1p
n

Pbunc
t=1 vec(Zt�hZ

0
t�h�

�zz); and continuous g we have

(Wn;Vn;
Z
g(Wn)dVn)) (W;V;

Z
g(W )dV);

so that
nX

t=b�nc+1
Wn(

t�h
n )

0��1n (
t
n)
Zt�hZ0t�h��p

n
��1n (

t
n)Wn(

t�h
n )

d!
Z 1

�

1
u2
vec(��1zz )

0(��1zz 
W (u)W (u)0)dV(u);

where we used trfABCDg = vec(D0)0(C 0 
 A)vec(B): The �rst term in Eq. (A.5) is given
by

1

n

nX
t=b�nc+1

Wn(
t�h
n )

0��1n (
t
n)�zz�

�1
n (

t
n)Wn(

t�h
n )

=

Z 1

�
Wn(u)

0��1n (u)�zz�
�1
n (u)Wn(u)du

=

Z 1

�
u�2Wn(u)

0��1zz Wn(u)du+ op(1)

d!
Z 1

�
u�2W (u)0��1zz W (u)du:

Next consider the terms involving �t and/or Zt�hX
0
1;t�h: First note that for � > 0 we have

as n!1 that sup�n<t�n
���~�1;t�h � ���� = op(n

�1=2) and sup�n<t�n
����̂2;t�h � �2��� = op(n

�1=2)

so that������
nX

b�nc+1
cv0

Zt�hX0
1;t�h
n n1=2(~�1;t�h � �)

������ �
������ 1ncv0

nX
b�nc+1

Zt�hX
0
1;t�h

������n1=2 sup
�n<t�n

���~�1;t�h � ���� = op(1);

and similarly
Pn
b�nc+1 n

1=2(�̂2;t�h��2)0
Zt�hX0

1;t�h
n n1=2(~�1;t�h��) = op(1) from which equa-

tions (A.6) and (A.7) follow. Next recall that �t = �̂
0
2;t(�21�

�1
11 �M21;tM

�1
11;t)X1;t�h and for
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any �xed 
 > 0; we have by (A.1) that supt�
n
���M21;tM

�1
11;t � �21�

�1
11

��� = op(1), and with

�2 = O(n�1=2) we have sup�n<t�n
����̂2;t�h � �2��� = Op(n

�1=2) so that�����X
t

�2t�h

����� � n1=2 sup j�̂02;tj sup
t

����21��111 �M21;tM
�1
11;t

��� ����� 1nX
t

X1;tX
0
1;t

�����
� sup

t

����21��111 �M21;tM
�1
11;t

���0 n1=2 sup
t
j�̂2;tj = op(1);�����X

t

�t�h"t

����� � n1=2 sup
t
j�̂2;tj0 sup

t

����21��111 �M21;tM
�1
11;t

��� �����n�1=2X
t

X1;t�h"t

����� = op(1);

which proves (A.8) and (A.9). Finally, the absolute value of the last two terms, (A.10) and
(A.11), are bounded by

n1=2 sup
t
j�̂2;tj0 sup

t

����21��111 �M21;tM
�1
11;t

��� �����X
t

X1;tX0
1;t

n

�����n1=2 supt
���~�1;t � ���� = op(1);

n1=2 sup
t
j�̂2;tj0 sup

t

����21��111 �M21;tM
�1
11;t

��� �����X
t

X1;tZ0t
n

�����n1=2 supt
����̂2;t � �2��� = op(1);

which completes the proof.
From the decomposition in Lemma A.2 and the limit results in Lemma A.3 we are now
ready to derive the asymptotic properties of Dn(�) and Tn(�): From Lemmas A.2 and A.3
it follows that

Tn(�) =
Dn(�)

�̂2"

d! c2(1� �)v0�zzv
�2"

+ 2c
�2"
v0
1=2 [B(1)�B(�)]

+2

Z 1

�
u�1B(u)0
1=2��1
1=2dB(u)

�
Z 1

�
u�2B(u)0
1=2��1
1=2B(u)du;

where we have used the fact that � = �2"�zz so that �
�1
zz =�

2
" = ��1: Now decompose


1=2��1
1=2 = Q0�Q, where � = diag(�1; : : : ; �q) is a diagonal matrix with eigenvalues
of 
1=2��1
1=2 that coincide with the eigenvalues of 
��1 and Q0Q = I: It follows that
~B(u) = QB(u) is a standard (q-dimensional) Brownian motion when B(u) is. Hence,

Tn(�) =
Dn(�)

�̂2"

d! c2(1� �)v0�zzv
�2"

+ 2c
�2"
v0
1=2Q0

h
~B(1)� ~B(�)

i
+2

Z 1

�
u�1 ~B(u)0�d ~B(u)�

Z 1

�
u�2 ~B(u)0� ~B(u)du;

from which Theorem 4 follows. �
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A.8 Proof of Theorem 5

Proof. From the de�nition of G(u) (de�ned through Assumptions 1-3), it follows that the
path of critical values, c�(u) is continuous in u (because Fu;�(x) is continuous in (u; x)
on [
; 1 � 
] � R), so c�(u) 2 D[
;1�
]: Hence, by the continuous mapping theorem and
Assumption 4, the smallest p-value over the range of split points, [
; 1 � 
]; converges in
distribution and the CDF of the limit distribution is given by

Prfp[
;1�
] � �g = PrfG(u) � c�(u) for some u 2 [
; 1� 
]g
= Prf sup


�u�1�

[G(u)� c�(u)] � 0g:
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Type I error rate induced by split point mining

Nominal level

q � = 0:20 � = 0:10 � = 0:05 � = 0:01

1 0.4475 0.2582 0.1482 0.0373

2 0.5252 0.3118 0.1723 0.0448

3 0.5701 0.3382 0.1979 0.0546

4 0.6032 0.3611 0.211 0.0528

5 0.6157 0.3795 0.2195 0.0549

Table 1: This table shows the actual rejection rate for di¤erent nominal critical levels (�))

and di¤erent dimensions (q) of the alternative model relative to the benchmark. Simulations

are conducted under the null model with 
 = 0:1: and use a discretization with n = 10; 000

and N = 10; 000 simulations).

Split-adjusted Critical values for the minimum p-value

critical values:

q � = 20% � = 10% � = 5% � = 1%

1 0.073 0.029 0.013 0.001

2 0.059 0.024 0.011 0.001

3 0.05 0.021 0.001 0.001

4 0.046 0.02 0.001 0.001

5 0.044 0.02 0.001 0.001

Table 2: This table shows the split-mining adjusted critical values at which the minimum

p-value, p[
;1�
], is signi�cant when 
 = 0:1: The critical values for the minimum p-value

are given for q = 1; : : : ; 5 and four signi�cance levels, � = 0:20; 0:10, 0:05, and 0:01and use

a discretization with n = 10; 000 and N = 10; 000 simulated series).
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Table 4: McCracken Critical values versus exact critical values

� 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

� 0.909 0.833 0.714 0.625 0.556 0.500 0.455 0.417 0.385 0.357 0.333

� = 0.99 1.996 2.691 3.426 3.907 4.129 4.200 4.362 4.304 4.309 4.278 4.250

2.168 2.830 3.509 3.851 4.040 4.146 4.202 4.225 4.227 4.214 4.191

� = 0.95 1.184 1.453 1.733 1.891 1.820 1.802 1.819 1.752 1.734 1.692 1.706

1.198 1.515 1.789 1.880 1.895 1.870 1.824 1.766 1.702 1.633 1.563

� = 0.90 0.794 0.912 1.029 1.077 1.008 0.880 0.785 0.697 0.666 0.587 0.506

0.780 0.949 1.048 1.031 0.970 0.890 0.800 0.708 0.614 0.522 0.431

Note: This table compares the critical values in McCracken (2007), which uses Monte Carlo sim-

ulation to evaluate the stochastic integrals, to the exact critical values obtained from the CDF of

the non-central Laplace distribution. For each critical value (�) the �rst row shows the McCracken

critical values, while the second line shows the exact critical values. All calculations assume q = 2

additional predictor variables.
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Figure 1: The CDF of the minimum p-value, p[
;1�
]; for 
 = 0:1.

Figure 2: Histograms of the location of the smallest p-value under the null hypothesis and

the alternative. Under the null hypothesis, the smallest p-value, min
�r�1�
 pr; is most

likely to be located towards the end of the sample, while under the alternative the smallest

p-value is more likely to be located early in the sample.
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Figure 3: Distribution of p-values under the local alternatives c = 1 and c = 2 for � = 0:25;

0:50 and 0:75, when q = 1; � = 1; and h = 1: Note that power is largest for � = 0:25:
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Figure 4: Values of the Tn(�) statistic and p(�)-values for di¤erent choices of the sample

split point, �. Values are based on the U.S. stock return prediction model that uses the

default spread as a predictor variable.
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Figure 5: Values of the Tn(�) statistic and p(�)-values for di¤erent choices of the sample

split point, �. The plots are based on the U.S. in�ation prediction model that uses four

common factors as additional predictor variables.
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